In my home automation system time series data is recorded at irregular intervals. Some values are sent when they change by more than a certain data, values may also be sent periodically even if unchanged in order to provide a 'keep-alive' signal.
This complicates any calculations but provides substantial data volume reduction. For example to calculate the difference between two sequences we need to iterate over each time value present from either series and interpolate the value in the series that doesn't have a value at that precise time.
My time series code has also always removed unchanged values. When the new value comes in, if it's the same as the previous value I simply update the timesstamp of the last value in the series and save it back to the database.
But now I've gone one step further and for each incoming value I calculate whether it is collinear with the two previous points. If so, I can remove the middle point and record only the new end point. I do this within a certain tolerance after normalizing the X and the Y values to a 0-1 range. This has the effect of removing any redundant points that don't change the shape of the curve.
I'm expecting this change to reduce the overall data volume quite a bit since many analog values look like a straight line for considerable periods of time during the day.
I've been working on home automation for over 15 years and I'm close to achieving my goal which is a house that understands where everyone is at all times, can predict where you are going next and can control lighting, heating and other systems without you having to do or say anything. That's a true "smart home".
My year long Bluetooth project that won the $20,000 HCI and Microsoft competition during lockdown has continued to grow and now reliably tracks how many people are in the house and outside and can locate any device down to room level.
Digital Twin are an online representation of a real world object, a copy of its properties in the digital world and a way to send updated and commands to it. In effect I've been making them for years but now they have a trendy name.
An overview of the many sensors I've experimented with for home automation including my favorite under-floor strain gauge, through all the usual PIR, beam and contact sensors to some more esoteric devices like an 8x8 thermal camera.
Why automated learning is hard for a smart home. The perils of over-fitting, under-fitting and how the general unpredictable nature of life makes it hard to build a system that learns your behavior.
ESP32 provides a great platform for sensors around the house but by the time you've added a USB power brick, cable and enclosure it's quite messy. I wanted a device that I could just plug in with no exposed wires and no mounting needed so I designed one in OpenSCAD.
Bluetooth sensing for home automation is a great proxy for people counting as it can detect and locate each cellphone in the house. iBeacons attached to tools, cars and pets can provide a 'find my anything' feature too.
Having at least one light sensor is critical for any home automation system that controls lightng. Lights need to be turned on when it's dark not at specific times of day, especially here in Seattle when it can be dark and cloudy at any time of day.
Microwave doppler sensors can be found in some alarm sensors but there are also available very cheaply as a separate component. They offer exceptional range but suffer from false triggers requiring a probailistic approach to people sensing.
Optical-beam sensors are reliable and can cover a long-distance such as across a garage or aisle-way. When they include multiple-beams they have good false-trigger rejection.
Home automation systems need to respond to events in the real world. Sometimes it's an analog value, sometimes it's binary, rarely is it clean and not susceptible to problems. Let's discuss some of the ways to convert these inputs into actions.
Another super useful function for handling sensor data and converting to probabilities is the logistic function 1/(1+e^-x). Using this you can easily map values onto a 0.0-1.0 probability range.
In a home automation system we often want to convert a measurement into a probability. The ATAN curve is one of my favorite curves for this as it's easy to map overything onto a 0.0-1.0 range.
Several years ago we did a major remodel. I did all of the finish electrical myself and supervised all of the rough-in electrical. I also put in all of the electrical system and water in our barn. I have opinions ...
An if-this-then-that style rules machine is insufficient for lighting control. This state machine accomplishes 90% of the correct behavior for a light that is controlled automatically and manually in a home automation system.