The Blog of Ian Mercer.

Passive Air Conditioning to reduce Energy Consumption

Cover Image for Passive Air Conditioning to reduce Energy Consumption

Creative Commons
License photo credit: dynamosquito

Technology to heat or cool buildings naturally and without expending huge quantities of energy has existed for thousands of years.  In Iran this 'badgir' has a natural cooling system made with mud bricks and Adobe. It uses the air circulation between two towers passing through a dome refreshed by the flow of water into an underground channel named Qanat.

By contrast, typical American home construction affords few opportunities to use nature to help heat or cool the spaces we live in.  Homes here are built with thin walls making them poor insulators and although modern homes are well insulated with fiberglass insulation in the walls and roof spaces that is done primarily to keep the heat in; it provides little thermal inertia and has the unintended consequence of trapping heat in the house during summer months when there is plenty of sunlight streaming through large windows but no way out.  Worse still, in modern construction, windows and doors are kept tightly closed and the building itself is built so tight that it needs a fan to bring in outside air regularly to improve the air quality in the building.  That fan uses energy and runs on a dumb timer, sucking in potentially cold air in winter and hot air in the summer.

Having already reduced my total electricity consumption by over 40% and made inroads in how much gas we use for heating I've recently begun to look at how we can reduce the amount of cooling needed to keep our house comfortable in the summer.

In a location where there is a significant variation between daytime and night time temperatures there ought to be an opportunity to heat or cool a house naturally using free energy from the environment. Here near Seattle for several months each year we have just such an environment as you can see on the graph to the right (click to enlarge). The nighttime lows are currently below 70°F and the daytime highs are well above 70°F.

Since we already have a fan connected up that's forcing external air into the house why not connect that fan to the home automation system and dispense with the dumb timer that was driving it.  Now the house has control of that fan it can change the time of day when fresh air is brought into the house to use warmer air in winter (around 3PM) and cooler air in summer (around 3AM).  It can also use this fan in conjunction with the air conditioning system.  For example, it knows you are upstairs and that it's too warm up there tonight, the air conditioning has been running but it's now past midnight and although it's still 72 inside it's dropped below 70 outside.  In this situation it can simply open the external damper, turn on the fan and turn off the air conditioning.  Cool air flows in and the compressor is idle.

All this seems like a good theory but because I've only had it installed for a few days it's too early to say how well it will work.

But what about houses with no circulation fan?  Could we simply use doors and windows to improve comfort and reduce costs by telling the occupants when to open and close them?  Today for example I was up early and it was cool outside so I opened up all the doors to the deck.  The graph below shows what happened: a much bigger temperature drop than the day before even though it's a much warmer day today overall.  What I failed to do today, however, was to close them at the right time so the early gains in 'coolness' were soon offset by the rapidly rising outdoor temperature and before lunch it was already warmer inside than the day before.  But what if the house calculated what to do and told you so that you could do an optimum adjustment to doors and windows to achieve free cooling?

My home automation system tracks the temperature in each zone in the house using an Aprilaire communicating thermostat with RS485.  It can display graphs for any variable or collection of variables using the ASP.NET charting control.  These graphs and experiments like the one this morning are helping me understand the dynamics of our house and figure out the best ways to achieve passive cooling (or heating).

Related Stories

Cover Image for Time Series Data Compression

Time Series Data Compression

This new technique to compress the time series data collected by my home automation system seems to be working really well.

Ian Mercer
Ian Mercer
Cover Image for Home Automation

Home Automation

I've been working on home automation for over 15 years and I'm close to achieving my goal which is a house that understands where everyone is at all times, can predict where you are going next and can control lighting, heating and other systems without you having to do or say anything. That's a true "smart home".

Ian Mercer
Ian Mercer
Cover Image for Home Automation Sensors

Home Automation Sensors

An overview of the many sensors I've experimented with for home automation including my favorite under-floor strain gauge, through all the usual PIR, beam and contact sensors to some more esoteric devices like an 8x8 thermal camera.

Ian Mercer
Ian Mercer
Cover Image for Collinearity test for sensor data compression

Collinearity test for sensor data compression

One way to reduce the volume of sensor data is to remove redundant points. In a system with timestamped data recorded on an irregular interval we can achieve this by removing co-linear points.

Ian Mercer
Ian Mercer
Cover Image for Event blocks

Event blocks

Home automation systems need to respond to events in the real world. Sometimes it's an analog value, sometimes it's binary, rarely is it clean and not susceptible to problems. Let's discuss some of the ways to convert these inputs into actions.

Ian Mercer
Ian Mercer
Cover Image for Logistic function - convert values to probabilities

Logistic function - convert values to probabilities

Another super useful function for handling sensor data and converting to probabilities is the logistic function 1/(1+e^-x). Using this you can easily map values onto a 0.0-1.0 probability range.

Ian Mercer
Ian Mercer
Cover Image for ATAN curve for probabilities

ATAN curve for probabilities

In a home automation system we often want to convert a measurement into a probability. The ATAN curve is one of my favorite curves for this as it's easy to map overything onto a 0.0-1.0 range.

Ian Mercer
Ian Mercer
Cover Image for Probabilistic Home Automation

Probabilistic Home Automation

A probabilistic approach to home automation models the probability that each room is occupied and how many people are in that room.

Ian Mercer
Ian Mercer
Cover Image for Multiple hypothesis tracking

Multiple hypothesis tracking

A statistical approach to understanding which rooms are occupied in a smart house

Ian Mercer
Ian Mercer
Cover Image for A state machine for lighting control

A state machine for lighting control

An if-this-then-that style rules machine is insufficient for lighting control. This state machine accomplishes 90% of the correct behavior for a light that is controlled automatically and manually in a home automation system.

Ian Mercer
Ian Mercer
Cover Image for Home Automation States

Home Automation States

Understanding the many different 'states' a house can have is critical to creating great home automation

Ian Mercer
Ian Mercer
Cover Image for Graphing gigabytes of home automation data with tableau

Graphing gigabytes of home automation data with tableau

Some interesting charts from the gigabytes of data my home automation system produces

Ian Mercer
Ian Mercer
Cover Image for iBeacons for Home Automation

iBeacons for Home Automation

My investigations into using iBeacons for home automation

Ian Mercer
Ian Mercer
Cover Image for iBeacon meetup in Seattle - January 2015

iBeacon meetup in Seattle - January 2015

My notes on the iBeacon meetup in Seattle held in January 2015

Ian Mercer
Ian Mercer
Cover Image for Home Automation Systems as a Graph

Home Automation Systems as a Graph

Using nodes and links to represent a home and all the devices in it

Ian Mercer
Ian Mercer
Cover Image for N-Gram Analysis of Sensor Events in Home Automation

N-Gram Analysis of Sensor Events in Home Automation

Using n-gram analysis to spot patterns in sensor activations

Ian Mercer
Ian Mercer
Cover Image for Xamarin Forms Application For Home Automation

Xamarin Forms Application For Home Automation

Building a Xamarin Forms application to control my home automation system

Ian Mercer
Ian Mercer
Cover Image for The Internet of Hubs (and things)

The Internet of Hubs (and things)

Maybe it should be called the Internet of Hubs instead

Ian Mercer
Ian Mercer
Cover Image for Showing home status with just a single RGB LED

Showing home status with just a single RGB LED

Multicolored LEDs can convey a lot of information in a small space

Ian Mercer
Ian Mercer
Cover Image for A wireless sensor network using Moteino boards

A wireless sensor network using Moteino boards

The diminutive Arduino boards include a powerful transmitter/receiver

Ian Mercer
Ian Mercer
Cover Image for The home as a user interface

The home as a user interface

Ian Mercer
Ian Mercer

A RESTful API for sensor data

POSTing data to a home automation system from Arduino devices

Ian Mercer
Ian Mercer
Cover Image for The Internet of Boilers

The Internet of Boilers

An experiment to measure every aspect of an HVAC / boiler system

Ian Mercer
Ian Mercer

VariableWithHistory - making persistence invisible, making history visible

A novel approach to adding history to variables in a programming language

Ian Mercer
Ian Mercer
Cover Image for A Quantified House - My Talk to the Seattle Quantified Self Meetup

A Quantified House - My Talk to the Seattle Quantified Self Meetup

My talk to the Seattle Quantified Self meetup

Ian Mercer
Ian Mercer

Integrating an Android phone into my home automation system

Some new features for my home automation using an Android phone

Ian Mercer
Ian Mercer
Cover Image for The Internet of Dogs

The Internet of Dogs

Connecting our dog into the home automation

Ian Mercer
Ian Mercer
Cover Image for GreenGoose Review

GreenGoose Review

A review of the now defunct GreenGoose sensor system

Ian Mercer
Ian Mercer
Cover Image for Home power meters revisited

Home power meters revisited

Ian Mercer
Ian Mercer
Cover Image for Home Automation Calendar Integration

Home Automation Calendar Integration

Ian Mercer
Ian Mercer

Smart home energy savings - update for 2010

Ian Mercer
Ian Mercer
Cover Image for A smart power strip

A smart power strip

Ian Mercer
Ian Mercer
Cover Image for What does a Smart House do at Halloween?

What does a Smart House do at Halloween?

My favorite home automation features for Halloween

Ian Mercer
Ian Mercer
Cover Image for Home Automation Top Features

Home Automation Top Features

Ian Mercer
Ian Mercer
Cover Image for Weather Forecasting for Home Automation

Weather Forecasting for Home Automation

Ian Mercer
Ian Mercer
Cover Image for How can I tell if my house is smart?

How can I tell if my house is smart?

Ian Mercer
Ian Mercer

Home Automation Block Diagram

Ian Mercer
Ian Mercer

World's Smartest House Demonstration

Ian Mercer
Ian Mercer

Future proof your home with a new conduit system?

Running conduit can be expensive but maybe you don't need one to every room

Ian Mercer
Ian Mercer
Cover Image for New Home Automation Server

New Home Automation Server

Ian Mercer
Ian Mercer
Cover Image for World's Smartest House

World's Smartest House

Over 15 years of experimentation with home automation

Ian Mercer
Ian Mercer
Cover Image for World's Smartest House Videos

World's Smartest House Videos

A collection of videos about my smart home efforts

Ian Mercer
Ian Mercer